Cosymmetries and Nijenhuis recursion operators for difference equations

نویسندگان

  • Alexander V. Mikhailov
  • Jing Ping Wang
چکیده

In this paper we discuss the concept of cosymmetries and co–recursion operators for difference equations and present a co–recursion operator for the Viallet equation. We also discover a new type of factorisation for the recursion operators of difference equations. This factorisation enables us to give an elegant proof that the recursion operator given in arXiv:1004.5346 is indeed a recursion operator for the Viallet equation. Moreover, we show that this operator is Nijenhuis and thus generates infinitely many commuting local symmetries. This recursion operator and its factorisation into Hamiltonian and symplectic operators can be applied to Yamilov’s discretisation of the Krichever-Novikov equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrable Systems and their Recursion Operators

In this paper we discuss the structure of recursion operators. We show that recursion operators of evolution equations have a nonlocal part that is determined by symmetries and cosymmetries. This enables us to compute recursion operators more systematically. Under certain conditions (which hold for all examples known to us) Nijenhuis operators are well defined, i.e., they give rise to hierarchi...

متن کامل

Lenard scheme for two dimensional periodic Volterra chain

We prove that for compatible weakly nonlocal Hamiltonian and symplectic operators, hierarchies of infinitely many commuting local symmetries and conservation laws can be generated under some easily verified conditions no matter whether the generating Nijenhuis operators are weakly nonlocal or not. We construct a recursion operator of the two dimensional periodic Volterra chain from its Lax repr...

متن کامل

A Geometric Study of the Dispersionless Boussinesq Type Equation

We discuss the dispersionless Boussinesq type equation, which is equivalent to the Benney–Lax equation, being a system of equations of hydrodynamical type. This equation was discussed in [4]. The results include: A description of local and nonlocal Hamiltonian and symplectic structures, hierarchies of symmetries, hierarchies of conservation laws, recursion operators for symmetries and generatin...

متن کامل

Recursion Operators and Frobenius Manifolds

In this note I exhibit a “discrete homotopy” which joins the category of Fmanifolds to the category of Poisson–Nijenhuis manifolds, passing through the category of Frobenius manifolds.

متن کامل

Symbolic Computation of Recursion Operators for Nonlinear Differential-Difference equations

An algorithm for the symbolic computation of recursion operators for systems of nonlinear differential-difference equations (DDEs) is presented. Recursion operators allow one to generate an infinite sequence of generalized symmetries. The existence of a recursion operator therefore guarantees the complete integrability of the DDE. The algorithm is based in part on the concept of dilation invari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010